

Crop monitoring as an E-agriculture tool in developing countries (E-AGRI)

FP7 STREP Project (GA 270351)

E-AGRI (content)

- Background (what)
- Objectives (how far)
- Study areas (where)
- Partnership (who)
- State of the art (how)
- Structure and Planning

E-AGRI : Background

Agriculture: one of the principal shares of EU's competency (60 over 130 billion EUR):

- Within 27 member states: to implement its <u>CAP</u>
- Global market: to strengthen the competitive position of European agriculture

 How to feed 7 billion people (food security)
 How to deal with surging agricultural commodity prices (trade)

E-AGRI: General objectives

- Transfer and adaptation of European agricultural monitoring technology in developing countries (DEMONSTRATION)
- Establishing networks of users on the crop monitoring technology (DISSEMINATION)
- Providing the feedback and improvement for European expertise and know-how (ADDED VALUES for EU)
- Creating synergy with other European crop monitoring actions (MARS-Food, GMFS...) (MORE COLLABORATION)

E-AGRI: 3 study areas

HuaiBei (Anhui) and Jianghuai (Jiangsu) Plains

Morocco

E-Agriculture

E-AGRI: 9 partner organizations

Approaches from 3 different angles

E-AGRI: Specific objectives

- Statistic Integration (Alterra)
- Capacity building (Kenya) and international networking (VITO & DRSRS)

Methodology: Yield estimation: Agro-meteorological modelling - CGMS

Methodology: Yield estimation: Agro-meteorological modelling - CGMS

	Actors partners	Ground data	research	Main Output Deliverables	dissemin ation
CGMS	SDLO (NL) INRA (MO) AIFER (CN)	Crop calendar Crop mask Meteo INRA (MO) AIFER (CN)	Identifying local crop growth drivers Adapted crop parameters Meteo data interpolation	Regional statistic databases Adapted CGMS models	Training workshop Piloting demo.

Methodology: Yield estimation: Agro-meteorological modelling - BioMA

Methodology: Yield estimation: Agro-meteorological modelling - BioMA

	Actors partners	Ground data	research	Main Output Deliverables	dissemination
BioMA	UMI JRC INRA JAAS	Crop calendre; Phenological parameters of cultivars	Spatially distribited sensitivity analysis; Calibration of rice /wheat parameters	Database for model parameters Multi-model platforms for rice/wheat simulation User guide for local crop monitoring application	Training workshop Pilot demo (field and regional scales)

Methodology: Yield estimation Remote sensing – LoRes Imagery

Product P (Segment)

S10 (Ten daily synthesis)

SPOT-VEGETATION Spatial:1°/112 resolution (+/- 1km) Time series: Since 1998 Derived vegetation/crop indices: NDVI, fAPAR, DMP...

Methodology: Yield estimation Using RS vegetation indicators

Wheat (Morocco) – using vegetation indicators

Province	ΣΝDVΙ	Rainfall		Temperat.	df	\mathbf{R}^2	R_p^2
Safi	-11.053 + 3.137 ENDVI -	+ 0.058 s1o2 +	0.052 f1a2		10	97***	92***
	(79)	(7)	(10)				
El Jadida	-1.781+ 3.579∑NDVI -	⊢ 0.011 o3j3			10	90***	82***
	(78)	(12)				***	***
Fes	-12.196+ 3.140ΣNDVI -	⊢ 0.095 n1d1 +	0.028j3a1		10	97***	93***
	(76)	(18)	(3)			***	***
Khouribga	-8.539+ 2.400∑NDVI -	⊢ 0.034 n3d2 +	0.028j3a3		11	97***	92***
	(74)	(4)	(20)			***	***
Kenitra	-27.561 + 7.992∑NDVI -	⊢ 0.127 m3a1 +	0.564 y2y3		10	93***	86***
	(74)	(11)	(8)			***	***
Essaouira	-6.812+ 3.074 SNDVI -	⊢ 0.014 j3a3			11	85	80
	(73)	(12)				***	***
Taza	$6.276 + 4.096 \Sigma NDVI -$	⊢ 0.029 n3d3		- 1.186 t04	11 9	96	90
	(69)	(20)		(6)		o o ***	o .***
Meknés	$15.790 + 5.886 \Sigma NDVI -$	⊢ 0.170 y2y3		- 1.995 t03t04	11 9	98	94
~	(67)	(26)	0.05(1) 0	(5)		o = ***	o 1 ***
Settat	$-5.096 + 1.359 \Sigma NDVI -$	+ 0.064 o3n2 +	0.076j1m3		10	97	91
a	(66)	(7)	(24)			- 0**	c * **
Casablanca	-13.319+ 5.667 SNDVI -	⊢ 0.054 j3f2			П	78	62
	(65)	(12)				o***	- 1 **
Nador	$-8.029 + 4.988 \sum_{i=1}^{i} NDVI - $	+ 0.077 a la2			11	80	51
D 1	(62)	(18)	0.150 0.0			00***	a 0*
Kabat	$-30.560 + 7.213 \Sigma NDVI - (42)$	+ 0.065 n2n3 + (1.4)	0.158 m2a2		11	88	38
	(42)	(14)	(32)				

Methodology: Yield estimation: Yield forecasting using remote sensing

	Actors partners	Ground data	Research	Main Output Deliverables	Dissemination
Yield forecast using RS	VITO INRA AIFER	Official Statistics Time series of vegetation indicators	Best indictors or combination of indicators for assimilating the cereal yields in the target regions	Best regression models for forecasting the cereal yields in two regions.	Training Worshop Exchange of experts Bulltins

E-AGRI: Statistic Integration

Methodology: Yield estimation: Statistic Tool-box

	Actors partners	Ground data	Research	Main Output Deliverables	Dissemination
Statistical integration for E- Agriculture service	SDLO INRA	Official Statistics	 time trend analyses, (multiple) regression analyses and scenario analyses Efficiency of models relative to the trend only Hypothesis testing for determining significance of results 	Statistic toolbox	Demo Workshop Training sessions

Methodology: *Area estimation* Ground surveys + Remote sensing

Sampling design

Stratified Area Frame Sampling

Segment d'origine

Segment ajusté

Ground survey

Image classification

Acreage estimation = Area frame estimator + image classification estimator

Methodology: Area estimation

COUNTY	FUYUAN	TON- JIANG	SUIBIN	FUJIN	RAOHE	YOUYI	TOTAL
SOYBEAN	23.90	33.17	36.53	39.96	17.79	17.77	28.85
MAIZE	0.75	1.44	5.07	0.90	0.83	0.00	1.22
WHEAT	1.83	3.36	2.66	4.45	3.26	15.41	3.50
MELON	1.03	1.69	1.22	5.77	0.53	3.42	3.00
POTATO	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RICE	17.77	28.24	29.04	32.39	27.77	58.08	28.18
WETLAND	48.45	19.60	2.83	9.24	13.82	1.14	19.21
WATER	0.00	0.52	5.31	0.01	0.00	0.00	0.93
GRASS	0.62	0.52	0.03	0.35	1.16	0.00	0.53
POPLAR	0.30	0.67	0.13	1.03	1.74	0.24	0.88
DECI. FOR.	1.19	6.18	1.70	1.47	20.98	0.01	6.71
PINE	0.01	0.13	0.28	0.14	0.12	0.00	0.15
CONI. FOR.	2.48	0.54	1.51	0.81	9.99	0.08	2.73
URB open	0.56	1.18	2.39	1.32	0.53	0.22	1.15
URB+SOIL	0.38	0.79	6.09	1.03	0.84	1.72	1.43
URB dense	0.71	1.96	5.20	1.14	0.62	1.89	1.54
TOTAL %	100.00	100.00	100.00	100.00	100.00	100.00	100.00
km ² - CLAS	1040	5357	1010	6337	3703	155	
km ² - CTY	6238	6074	3332	8068	6338	1663	
km² %	17	88	30	79	58	9	

Methodology: Yield estimation: Crop Area Estimation

	Actors partners	Ground data	Research	Main Output Deliverables	Dissemination
Area estimation using smapling technique and RS	CAAS VITO AIFER INRA	Official Statistics Ground samples	Most accurate statistic models for each target region. The most cost- efficient way in sampling and using remote sensing estimators.	Field sample databases Validation with official statisticas	Training Workshop

E-AGRI: Capacity building in Kenya

Capacity building for a third developing country: Kenya In collaboration with other projects

Capacity building in Kenya

	Actors partners	Ground data	Research	Main Output Deliverables	Dissemination
Networking and capacity building – targeted country: Kenya	MEMR VITO INRA JRC		Applicability of yield estimation using RS indicators Improving area estimation approach	Feasability and capacity building reports	Networking and exchange with experts from Morocco and China

E-AGRI: Project structure

Crop monitoring as an E-agriculture tool in Developing Economies (E-AGRI)

E-AGRI: Project Planning

			T0	T0+6	T0+12	T0+18	T0+24	T0+30
WP 1	COORDINATION	VITO						
WP 2	CGMS	ALTERRA						
WP 21	Ground data collection	APEI						
WP 22	CGMS adaptation in MOROCCO	ALTERRA						
WP 23	CGMS adaptation in CHINA	ALTERRA						
WP 24	CGMS pilot in CHINA	ALTERRA						
WP 25	CGMS pilot in MOROCCO	INRA						
WP 3	BIOMA/WARM	UNIMI						
WP 31	Ground data collection WARM-BioMA	JAAS						
WP 32	WARM adaptation in CHINA	UNIMI						
WP 33	WARM pilot in CHINA	UNIMI						
WP 34	BIOMA adaptation in MOROCCO	JRC						
WP 35	BIOMA pllot in MOROCCO	JRC						
WP 4	Yield Estimation with RS	VITO						
WP 41	Official yield data collection	APEI						
WP 42	Crop biomass computing	VITO						
WP 43	Yield estimation in MOROCCO	INRA						
WP 44	Yield estimation in CHINA	VITO						
WP 5	Acreage assessment	CAAS						
WP 51	Ground data collection in CHINA	CAAS						
WP 52	Wheat acreage in CHINA	CAAS						
WP 53	Ground data collection in MOROCCO	INRA						
WP 54	Wheat acreage in MOROCCO	INRA						
WP 55	Accuracyassessment	VITO						
WP 56	Cost Eff.for crop mapping in E.A.	DRSRS						
WP 6	Statistic platform	ALTERRA						
WP 61	Statistic platform design	ALTERRA						
WP 62	Statistic platform pilot	INRA						
WP 7	Networking sustainable partnership	VITO						
WP 71	Networking/Partnership	VITO						
WP 72	Capacity building in KENYA	DRSRS						

A fruitful Collaboration

