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ACRONYMS & GLOSSARY 

CROP MODEL: a series of equations and/or algorithms, mainly implemented in a computer 
program, that reproduce the growth and development of crops. Data on 
weather, soil, and crop management are processed to predict information like, 
e.g., crop yield, maturity date, efficiency of fertilizers and other elements of 
crop production. Algorithms implemented in crop models are based on the 
existing knowledge on physiological, physical and ecological information on the 
way crops interact with environment. 

SENSITIVITY ANALYSIS: the study of how the variability in the outputs of mathematical 
models can be attributed to the uncertainty in the values of the inputs or of the 
parameters of the models. 

WARM: a model for the simulation of rice growth and development. It include modules for 
the simulation of the floodwater effect on the vertical thermal profile, rice 
blast disease, paddy soil hydrology, and the spikelet sterility due to abiotic 
factors. 

WOFOST: a model for the simulation of crop growth and development based on the 
concept of gross photosynthesis. It is the main model used by the Joint 
Research Centre of the European Commission for crop monitoring and yield 
forecasting. 

CROPSYST: a generic crop simulator based on the concept of net photosynthesis, estimated 
on a daily basis as driven by potentially transpired water and absorbed 
photosynthetically active radiation. 

MORRIS METHOD: a sensitivity analysis method based on the assumption that model 
outputs are at least once differentiable with respect to inputs, and on an 
efficient sampling design, derived from independent sampling strategies for the 
exploration of the parameter hyperspace. 

SOBOL’ METHOD: a sensitivity analysis method that allows the simultaneous exploration of 
the parameter hyperspace via Monte Carlo or quasi Monte Carlo sampling. The 
relevance of parameters or parameter interactions is quantified as percentage 
contribution to the total variance, computed using a distribution of model 
responses. 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Statistical_model
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EXECUTIVE SUMMARY 

The adoption of biophysical simulation models for crop yield forecasting in large areas 
requires their correct parameterization, aimed at increasing their degree of adeherence to 
the real system, and thus at providing reliable monitoring and yield estimates. To allow 
crop models reproducing properly the behaviour of the cultivated varieties in a region, a 
parameter set for each of them should be defined, and detailed information on where they 
are grown should be available and periodically updated. Since this is not feasible, 
modellers are used to group varieties according to their morphological and physiological 
features and to define a parameter set for each of the group. 
The preliminary step for the development of a parameter set for each of these groups of 
varieties was an extensive, spatially distributed, sensitivity analysis (SA) experiment, 
carried out on the three crop growth models that will be used for crop yield forecasting, 
WARM, WOFOST, and CropSyst. This study, performed by using two advanced SA 
techniques (Morris and Sobol’), allowed to identify – for each models and for the 
conditions experienced by rice in Jiangsu – the parameters with the highest influence on 
the accumulation of aboveground biomass at maturity. For WARM they are (i) maximum 
radiation use efficiency, (ii) optimum temperature for growth, (iii)  partitioning to laves at 
emergence, (iv) extinction coefficient for solar radiation, and (v) Specific Leaf Area at 
tillering. For WOFOST they are (i) efficiency of photosynthates conversion into storage 
organs, (ii) fraction of total biomass partitioned to roots at maturity, (iii)  fraction of total 
biomass partitioned to roots at emergence, (iv) efficiency of photosynthates conversion 
into leaves, and (v) efficiency of photosynthates conversion into root. Lastly, for CropSyst 
they are (i) maximum radiation use efficiency, (ii) optimum mean daily temperature for 
growth, (iii) initial Leaf Area Index, biomass-transpiration coefficient, and (v) extinction 
coefficient for solar radiation (k). 
These parameters are those on which the effort during the calibration activities will be 
concentrated, thus allowing to define the parameters sets that will be used to simulate rice 
in Jiangsu. 
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1. Introduction 
In the last years, different typologies of systems for crop yield forecasts have been 
proposed, differing for the techniques adopted, for the spatial scale considered, and for 
the sources of information used (Rojas et al., 2005). They range from simple systems based 
on extensive field surveys to complex systems able to work at continental scale and to 
integrate different sources of information. Some of the most simple ones are based on 
empirical relationships between remotely sensed vegetation indices and historical series of 
yield data (e.g., Mkhabela et al., 2005). Other approaches are based on biophysical 
simulation models, where species-specific (e.g., Bannayan and Crout, 1999; Bezuidenhout 
and Singles, 2007) or generic (e.g., Soler et a., 2007) crop simulators are used. The most 
sophisticated crop monitoring and forecasting systems are based on the combined use of 
data simulated by crop models and information derived from remote sensing (e.g., 
Genovese et al, 2001). 
For the systems that are partly or entirely based on crop models, a correct 
parameterization of the models themselves is crucial to get a satisfactory adherence of the 
simulated system to the real one, and thus to provide reliable monitoring and yield 
estimates. 
When crop models have to be used on large areas for reproducing the behaviour of all the 
varieties grown in that region, a specific parameter set for each of the variety should 
ideally be defined, and detailed information on where each variety is grown should be 
available and periodically updated. This is of course not feasible, and modellers are used to 
define a single parameter set where morphological and physiological features averaged for 
all the varieties grown in the area are codified. A way to increase the reliability of large-
area simulations is (i) to define groups of varieties with similar morphological and 
physiological features, (ii) to specify a set of parameters for each groups, (iii) to perform 
simulations – where possible – using a parameters set in the sub-areas where the 
corresponding varieties are grown. 
Parameters sets can be defined by using observations, in case parameters have a 
morphological or physiological meaning (i.e., they can be measured/estimated via growth 
chamber or field experiments). If parameters are not measurable or if observations are not 
available, or when models have a high number of parameters, their values are usually 
defined by performing calibrations aimed at lowering the differences between observed 
and simulated state variables. In this case, it is important to identify the parameters with 
the highest relevance on synthetic model outputs, therefore, those on which to 
concentrate the efforts during the calibration. The identification of the most relevant 
model parameters is carried out using advanced Monte Carlo based sensitivity analysis 
techniques (e.g., Asseng et al., 2002; Saltelli et al., 2005) that, in case model behaviour has 
to be analyzed for large areas, should be 
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 multi-year (to avoid getting results affected by seasonal-specific conditions) and 

 spatially distributed (to properly account for the spatial heterogeneity of the 
conditions explored). 

1.1. Sensitivity analysis of biophysical models 
Sensitivity analysis (SA) is a fundamental tool for supporting mathematical models 
development and use (Tarantola and Saltelli, 2003) because of its capability of explaining 
the variability in the outputs of the models themselves (Cariboni et al., 2007), via the 
quantification of the role of uncertain factors (i.e., parameters or driving variables). 
In recent years, SA has been increasingly used as a tool to understand models behaviour 
and to support their development, also through reduction or simplification processes 
aiming at avoiding redundancies in model structure and/or over-parametrizations 
(Tarantola and Saltelli, 2003; Jakeman et al., 2006). This is particularly important when 
interactions among different factors affect model outputs (Ratto et al., 2001), since other 
techniques like conventional multivariate statistics (principal component analysis to 
analyse interactions) proved to be only partially adequate (Spear et al., 1994). In this 
context, SA was recently recommended as a tool to be iteratively used during the process 
of model development (Ravetz, 1997; Refsgaard et al., 2005; Jakeman et al., 2006), in 
order to assure coherence in mathematical formalizations, to avoid over-parameterizations 
by driving simplification processes (Ratto et al., 2001; Tarantola and Saltelli, 2003), and to 
support the development of balanced models (Confalonieri, 2010). These features 
favoured the introduction of SA in different typologies of documents defining guidelines 
for model development (e.g., European Commission, 2005; Jakeman et al., 2006). All these 
findings lead to consider SA as a prerequisite for model use and calibration (Ratto et al., 
2001). 

1.1.1. Sensitivity analysis techniques 
It is possible to distinguish between two major groups of SA methods (Saltelli et al., 1999): 
local and global. Local methods examine the local response of the output(s) by varying 
parameters one at a time while keeping the others constant. Global methods examine the 
global response (averaged over the variation of all the parameters) of model output(s) 
while exploring the parameters hyperspace. Local methods, easier to implement, can only 
inspect one point at a time, and the SA results for a specific parameter depend on the 
central values of the others. 
Different global SA techniques have been developed in the last years. Among the methods 
most used, it is possible to identify three main classes: screening methods, regression-
based methods, variance-based methods. The most used screening method is the one 
proposed by Morris (1991), particularly effective in identifying a sub-set of important 
parameters in models (i) with a high number of parameters and (ii) with high 
computational requirements (Richter et al., 2009), maybe because of very small time step, 
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or when many SA experiments must be carried out. This method is based on the 
computation of a certain number of incremental ratios (elementary effects) for each factor 
and on averaging them to estimate the overall factor importance on model output(s) 
(Campolongo et al., 2007). The second class includes the regression methods, which are 
based on the computation of standard or partial regression coefficients, quantifying the 
effects of changes in the parameters values. Within this class, different methods can be 
used to generate the sample of parameter combinations needed to obtain the evaluation 
of model sensitivity, and therefore to calculate the regression coefficients: Latin Hypercube 
Sampling (LHS), Random and Quasi-Random LpTau are some of the most used worldwide. 
The last class of SA approaches, the variance-based methods, includes the Fourier 
Amplitude Sensitivity Test (FAST) (Cukier et al., 1978), its evolution Extended FAST (E-FAST; 
Saltelli et al., 1999), and the method of Sobol’ (Sobol’, 1993). All the methods belonging to 
this class compute total sensitivity indices for first and higher orders effects and are quite 
demanding in terms of computational time because of the high number of model 
simulations needed for each model factor under evaluation. FAST and E-FAST use 
transformation functions to sample the parameters space stochastically, whereas Sobol’ 
does not use transformation functions, thus having lower computational efficiency. Results 
obtained using Sobol’ often serve as benchmark for testing other SA methods (e.g., Saltelli 
and Sobol’, 1995). 

1.1.2. Sensitivity analysis of agrometeorological models 
Advanced SA techniques are increasingly used in the field of agrometeorological modelling. 
Van Griensven et al. (2006) applied a novel sampling strategy to identify the most relevant 
parameters in the SWAT catchment model for water flow, concluding that hydrologic 
parameters had the greatest impact on water quality. In the context of crop growth 
modelling, Richter et al. (2010) used the Morris method to identify the parameters of a 
complex crop model with the highest impact on Durum wheat yield formation at two 
locations, identifying the parameters involved with development and early light 
interception as the most relevant. Confalonieri et al. (2010a) applied the Morris and Sobol’ 
methods to a model for rice growth and development, comparing the SA results obtained 
for five European countries and, within each country, for three years characterized by 
different degree of continentality. Confalonieri (2011) quantified the impact of weather 
variables on the crop model CropSyst (spring barley in Norther Italy was simulated) by 
coupling a standard SA method (i.e., Morris) and a weather generator. 

1.2. Contents of the deliverable 
In this report, we report the methodology and the results of multi-year, spatially 
distributed sensitivity analyses of the models WARM, WOFOST and CropSyst for rice 
simulation in Jiangsu. 
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The methodology used is presented in section 2.1 “Multi-year, spatially distributed 
sensitivity analysis of the models WARM, WOFOST and CropSyst for rice simulation in 
Jiangsu”. 
Results and discussion are in section 3.1 “Sensitivity analysis of the models WARM, 
WOFOST and CropSyst for rice simulation in Jiangsu”. 
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2. Materials and methods 

2.1. Multi-year, spatially distributed sensitivity analysis of 
the models WARM, WOFOST and CropSyst for rice 
simulation in Jiangsu 

2.1.1. The crop models 
The simulators on which SAs were performed are WARM (Confalonieri et al., 2009a,b), 
WOFOST (Van Keulen and Wolf, 1986), and CropSyst (Stöckle et al., 2003) and. WARM 
(Water Accounting Rice Model) is a model specific for rice simulations, and it is used by the 
European Commission for rice yield forecasts. WOFOST is also used by the European 
Commission, within the MARS Crop Yield Forecasting System (http://mars.jrc.it/) for the 
simulation of the main herbaceous crops grown in Europe. CropSyst has been used in many 
studies worldwide for evaluating the impact of management and climatic scenarios for a 
variety of crops (e.g., Tubiello et al., 2000; Monzon et al., 2006). The models differ for the 
approaches used to reproduce the different processes related to crop growth and 
development, for the amount of data needed for their use, and for their behaviour, being 
characterized by different degrees of complexity, robustness and balance (Confalonieri et 
al., 2009; Confalonieri et al., 2010b; Confalonieri, 2010). 
The three models simulate crop development as a function of thermal time accumulated, 
with options to account for photoperiod. CropSyst has an option to account also for 
vernalization, and WARM accounts for the floodwater effects influencing air temperature 
using the micrometeorological model TRIS (Confalonieri et al., 2005). 
WARM simulates net photosynthesis using a RUE approach, with RUE varying to account 
for thermal limitation to photosynthesis, saturation of the enzymatic chains, senescence. 
Photosynthates are daily partitioned to leaves, stems and panicles. LAI is computed 
multiplying the leaves biomass by the specific leaf area, with the latter varying according to 
the development stage. Development stages are standardized by converting growing 
degrees days into a numerical code, in turn used to synchronise the simulation of different 
processes. Effects of diseases and abiotic damages on crop growth are simulated. 
Concerning daily biomass accumulation, CropSyst is based on the Tanner and Sinclair 
(1983) relationship between aboveground biomass (AGB), potential transpiration, vapour 
pressure deficit (VPD) and a VPD-corrected transpiration use efficiency (TUEVPD). The 
instability of the Tanner and Sinclair equation for low values of VPD leads to the adoption 
of a temperature-limited radiation use efficiency (RUE) approach when these conditions 
occur. CropSyst simulates leaf area development as a function of AGB, a constant specific 
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leaf area and an empirical coefficient, without the simulation of dynamic AGB partitioning 
to the different plant organs. 
WOFOST is the most sophisticated in reproducing the biophysical processes involved with 
crop growth, calculating gross photosynthesis, growth (during photosynthates partitioning 
to plant organs) and maintenance respirations. Partitioning of assimilates is thus driven by 
growth respiration, development-specific partitioning factors and efficiencies of 
assimilates conversion into the different organs. Leaf area expansion is calculated as a 
function of temperature for leaf area index (LAI) lower than one, and derived from specific 
leaf area and development stage elsewhere. WOFOST has a three-layer canopy 
representation, with a spherical leaf angle distribution and LAI split among the layers using 
a Gaussian integration. Leaves death is simulated by the two models as driven by 
senescence, with WOFOST reproducing this process also as a function of leaves self-
shading. 
Excluding the simulation of the processes involved with crop development, WOFOST is the 
model with the highest number of parameters to be specified/calibrated to define the 
morphological and physiological features of a variety (from about 40 to more than 100, 
according to the information available for parameters that change their values according 
to development stage or temperature). CropSyst has 12 parameters directly involved with 
the simulation of biomass accumulation and leaf area expansion. WARM is the most 
parsimonious, with five parameters involved with net photosintesis and six with 
aboveground biomass partitioning and leaf area index. 
The models are fully described in the seminal literature. 

2.1.2. The sensitivity analysis methods 
The high number of SA executions to be performed and the high number of parameters of 
the WOFOST model (see section 2.1.3) suggested to adopt a two steps procedure (e.g., 
Confalonieri et al., 2010a). The parameters of the two models were thus first screened 
using the parsimonious Morris method (Morris, 1991) and, then, the variance-based 
method of Sobol’ (Sobol’, 1993), considered a reference in SA but the most 
computationally expensive, was applied to the parameters with a not-negligible relevance 
according to Morris. 
In spite of its low model executions requirement, the Morris method proved its 
effectiveness in ranking parameters according to their relevance in different studies where 
it was compared with other methods (e.g., Campolongo et al. 2007, Confalonieri et al., 
2010c; Yang, 2011). In particular, Yang (2011) demonstrated that, although the method is 
not able to quantify the amount of variance each parameter is responsible for, it provides a 
good approximation of relative importance of each parameter, also in term of interaction 
characterization. 
The Morris method can be regarded as global, since the final measure is obtained by 
averaging local (elementary) effects (Kucherenko et al., 2009). It is based on the 
assumption that model outputs are at least once differentiable with respect to inputs, and 
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on a particular design of the SA experiment, derived from independent sampling strategies 
for the exploration of the parameter hyperspace. The first assumption allows to determine 
which parameters can be considered to have effects on outputs that are (i) negligible, (ii) 
linear and additive or (iii) non-linear or involved in interactions with other parameters. 
Assuming k as the total number of model parameters, X = (x1,…, xk) is the parameter 
vector. Each parameter xi, after being scaled in the interval [0, 1], may takes on values in 
the set {0, 1/(p-1), 2/(p-1),…,1}, where p is the number of levels. The parameter space Ω is 
then defined as a k-dimensional p-level unit hypercube. Assuming Δ as 1/*2(p-1)] and y(X) 
as a model output, an elementary effect of the i-th factor is therefore calculated as: 

   



  Xyxxxxxy

XR kiii
i

,...,,,,...,
),( 111  

The finite distribution of Ri is obtained by randomly sampling X in Ω and is composed by a 
total of pk-l[p - ∆(p - 1)] elements for each xi. Mean (μi) and standard deviation (σi) of each 
distribution of Ri are the sensitivity measures. μi represents the overall influence (total 
effect: strength, hereafter) of the parameter xi, while standard deviation (spread) identifies 
– for high values – nonlinearities in model response or interactions with other parameters. 
Morris suggested a random sampling design to estimate μ and σ over a smaller number of 
elementary effects. The method selects r different trajectories of (k+1) points, each 
differing from the previous because of ∆ applied each time to a single parameter. This 
design is notably an improvement with respect to varying one-factor at a time (OAT), both 
because each parameter step does not revert to the baseline point and because r is usually 
major than one, leading to widely explore Ω (Saltelli, 2010). In this way, the total number 
of model evaluations is then lowered to r(k+1), in turns decidedly lowering the 
computational time. After this sampling phase, parameters are transformed from the unit 
hypercube to their physical values. 
In this study, the evolution of the Morris method proposed by Campolongo et al. (2007) 
was used. This approach allows to (i) select the r trajectories in such a way to maximise 
their dispersion in the input space Ω, and (ii) get the values of μi

* (instead of μi), which is 
the estimate of the mean of the distribution of the absolute values of the elementary 
effects Ri: 

r

R
r

i

i

i


 1*  

The use of *

i  solves the problems due to effects of opposite signs which occurs when the 

model is non-monotonic. 
The method of Sobol’ allows the simultaneous exploration of the parameter hyperspace 
via Monte Carlo or quasi Monte Carlo sampling. According to Sobol’, the variance of the 
model output is decomposed into terms of increasing dimension, called partial variances, 
that represent the contribution of each single input (but even pairs, triplets, etc.) to the 
overall uncertainty of the model output. The relevance of parameters or parameter 
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interactions is quantified as percentage contribution to the total variance, computed using 
a distribution of model responses (Tang et al., 2007). For independent parameters, the 
Sobol’ variance decomposition can be written as: 

   
 


ji

k

kji

ijkij

i

i VVVVyV ...12...  

where Vi is the amount of variance of the model output y due to the ith parameter, V ij is 
the amount of y variance explained by the interaction of the ith and jth parameters, Vijk is 
the proportion of y variance due to the interaction of the ith, jth and kth parameters, k is 
the number of parameters, defining the k-dimensional hyperspace. This variance 

decomposition is used to derive sensitivity indices of different order as 
V

V
S i

i  , 
V

V
S

ij

ij  , 

etc., with the total order effect for a parameter, Sti, equal to the sum of Si, Sij, … up to the 
kth order of analysis. In this study, the value of St for each parameter was calculated 
according to Homma and Saltelli (1996) and Saltelli (2002), to reduce the computational 
cost of the analysis. 

2.1.3. Sensitivity analysis experiments 
Information on weather data were retrieve from the ECMWF (European Centre for 
Medium-Range Weather Forecasts) ERA-Interim database (1989-2010) 
(http://www.ecmwf.int/research/era/do/get/era-interim), whereas sowing information 
were derived from the SAGE Center for Sustainability and the Global Environment 
database (SAGE, http://www.sage.wisc.edu/index.html). 
For all the SAs, aboveground biomass at physiological maturity (AGBmat) was considered as 
the model output to investigate. AGBmat was selected as it is a synthetic representation of 
the culmination of numerous biophysical processes. AGBmat is also a product of all crop 
parameters, acting in conjunction with each other. 
For both the SA methods, the generation of the samples of possible combinations of crop 
parameters was carried out using the SimLab dynamic link library (SimLab, 2011), as well as 
the computation of the sensitivity indices from simulation results. 
For this study, only crop parameters directly involved in crop growth (photosynthesis, 
partitioning of assimilates, leaf area evolution, senescence) were used. 
Both SA methods require knowing the probability distributions of the various parameters 
in order to compute the sensitivity measures of interest (Morris μ* and Sobol St in this 
study). A set of values was therefore associated to each parameter, as derived from 
literature (Tables 1, 2 and 3). Means and standard deviations were calculated for each 
parameter, after the application of the Shapiro-Wilk test guaranteed on the normality of 
the distributions. Specific sampling designs (according to the Morris and Sobol’ methods) 
were applied to generate the samples of combinations in the parameters hyperspace and 
simulations were carried out using both the models for each sample point. To avoid getting 
results affected by seasonal-specific effects, 5-year simulations were run and their results 

http://www.sage.wisc.edu/index.html
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averaged. The model outputs (averaged) were then provided to the sensitivity procedures 
to calculate the sensitivity measures. 
To avoid sampling values in the tails of the normal distribution, the domain of each 
parameter was limited by truncations at the 10th and 90th percentiles. This allowed 
avoiding uncoherent parameters values. 
For WOFOST, the number of couples [development stage, value] and [average daily air 
temperature, value] for which SA was performed was reduced (i) to focus on the most 
relevant ones and (ii) to avoid inconsistencies which can occur when sample values are 
generated during SA (e.g., partitioning coefficients to storage organs decreasing with 
development stage). 
The total number of models runs was 9,668,970. 

Table 1: Crop parameters of WARM and statistical settings used for sensitivity analysis – 
rice. 

Parameter Unit Mean Standard 
deviation 

Sourcea 

Maximum radiation use 
efficiency (RUE) 

g MJ-1 3 0.5 1 

Extinction coefficient for solar 
radiation (k) 

- 0.5 0.04 1 

Base temperature for growth 
(Tbase) 

°C 12 0.6 2 

Optimum temperature for 
growth (Topt) 

°C 28 2 2 

Maximum temperature for 
growth (Tmax) 

°C 42 2 3 

Initial specific leaf area (SLAini) m2 kg-1 27 2 4 
Specific leaf area at tillering 
(SLAtill) 

m2 kg-1 18 3 6, 7, 8 

Partition coefficient to leaf at 
early stages (RipL0) 

kg kg-1 0.7 0.1 6, 8 

Leaf duration (LeafDur) °C-d 700 80 9 
Maximum panicle height 
(Hmax) 

cm 100 20 3 

a 1: Boschetti et al. (2006); 2: Confalonieri et al. (2009b) 3: Local experience; 4: Boschetti 
(unpublished data); 5: Boschetti et al. (2006); 6: Kropft et al. (1994); 7: Van Diepen et al. 
(1988); 8: Confalonieri (unpublished data); 9: Confalonieri and Bocchi (2005); 
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Table 2: Crop parameters of WOFOST and statistical settings used for sensitivity analysis - 
rice 

Parameter Unit Mean Standard 
deviation 

Sourcec 

Leaf area index at emergence 
(LAIEM) 

m2 m-2 0.01 0.005 1, 2 

Relative leaf area growth rate 
(RGRLAI) 

°C d-1 0.00855 0.000482 3 

Specific leaf area at DVSa = 35 
(SLA35) 

ha kg-1 0.0035 0.000525 4 

Specific leaf area at DVSa = 45 
(SLA45) 

ha kg-1 0.00262 0.0002128 4 

Specific leaf area at DVSa = 65 
(SLA65) 

ha kg-1 0.0023 0.000276 4 

Life span of leaves growing at 
35°C (SPAN) 

D 35 3.5 5 

Base temperature for leaves 
aging (Tbase) 

°C 9 1.5 5 

Extinction coefficient for diffuse 
visible light at DVS = 0 (KDIF000) 

- 0.436 0.1 3, 4, 6 

Extinction coefficient for diffuse 
visible light at DVS = 100 
(KDIF100) 

- 0.625 0.02 3, 6 

Light use efficiency at Tavgb = 
10°C (EFFTB10) 

kg ha-1 h-1 J-1 0.55 0.04 5, 7 

Light use efficiency at Tavg = 
30°C (EFFTB30) 

kg ha-1 h-1 J-1 0.35 0.04 5, 7 

Maximum CO2 assimilation rate 
at DVS = 000 (AMAXTB000) 

kg ha-1 h-1 40.24 10.2 8 

Maximum CO2 assimilation rate 
at DVS = 200 (AMAX200) 

kg ha-1 h-1 40.24 10.2 3, 5, 7 

AMAX reduction factor at Tavg = 
14°C (TMPFTB14) 

°C 0.2 0.08 3, 5, 7 

AMAX reduction factor at Tavg = 
23°C (TMPFTB23) 

°C 0.8 0.02 3, 5, 7 

Correction factor for traspiration 
rate (CFET) 

- 1 0.08 3, 5, 7 

Efficiency of conversion into 
leaves (CVL) 

kg kg-1 0.5 0.14 3, 5, 7 

Efficiency of conversion into kg kg-1 0.5 0.14 3, 5, 7 
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storage organs (CVO) 
Efficiency of conversion into 
roots (CVR) 

kg kg-1 0.5 0.14 3, 5, 7 

Efficiency of conversion into 
stems (CVS) 

kg kg-1 0.5 0.14 3, 5, 7 

Relative increase in respiration 
rate per 10°C of temperature 
increase (Q10) 

- 1.8 0.1 3, 5, 7 

Relative maintenance 
respiration rate for leaves (RML) 

kg CH2O kg-1 d-1 0.028 0.0005 3, 5, 7 

Relative maintenance 
respiration rate for storage 
organs (RMO) 

kg CH2O kg-1 d-1 0.01 0.003 3, 5, 7 

Relative maintenance 
respiration rate for roots (RMR) 

kg CH2O kg-1 d-1 0.012 0.0011 3, 5, 7 

Relative maintenance 
respiration rate for stems (RMS) 

kg CH2O kg-1 d-1 0.018 0.001 3, 5, 7 

Fraction of total biomass to 
roots at DVS = 0 (FRTB000) 

kg kg-1 0.45 0.058 3, 5, 7 

Fraction of total biomass to 
roots at DVS = 100 (FRTB100) 

kg kg-1 0.25 0.042 3, 5, 7 

Fraction of aboveground dry 
matter to leaves at DVS = 0 
(FLTB000) 

kg kg-1 0.7 0.083 3, 5, 7 

Fraction of aboveground dry 
matter to leaves at DVS = 50 
(FLTB050) 

kg kg-1 0.45 0.16 3, 5, 7 

Fraction of aboveground dry 
matter to storage organs at DVS 
= 82 (FOTB082) 

kg kg-1 0.2 0.043 3, 5, 7 

Fraction of aboveground dry 
matter to storage organs at DVS 
= 100 (FLTB100) 

kg kg-1 0.65 0.083 3, 5, 7 

Specific stem area at DVS = 30 
(SSA030) 

ha kg-1 0.000919 0.000269 3 

Specific stem area at DVS = 120 
(SSA120) 

ha kg-1 0.000216 0.00005 3 

Specific stem area at DVS = 150 
(SSA150) 

ha kg-1 0.000335 0.000009 3 

a Development stage code (unitless; 0: emergence, 100: flowering, 200: physiological 
maturity) 



 
 

 

Crop Monitoring as an E-agriculture tool in 
Developing Countries 

E-AGRI GA Nr. 270351 
 

 
 

 

 

E-AGRI_D32.1_Sensitivity analysis report _1.0, E-
AGRI_D34.1 

 Page 20 of 50 

 

b Average air daily temperature (°C) 
c 1: Boschetti (unpublished data); 2: Stroppiana et al. (2006); 3: Casanova et al. (2000); 4: 
Dingkuhn et al. (1999); 5: Kropff et al. (1994); 6: Boschetti et al. (2006); 7: Van Diepen et al. 
(1988); 8: Ziska and Teramura (1992). 
 

Table 3: Crop parameters of CropSyst and statistical settings used for sensitivity analysis - 
rice 

Parameter Unit Mean Standard 
deviation 

Sourcea 

Biomass-transpiration 
coefficient (BTR) 

kPa kg m-3 5 1 1 

Radiation use efficiency (RUE) g MJ-1 3 0.5 2 
Specific leaf area (SLA) m2 kg-1 27 2 2 
Stem/leaf partition coefficient 
(SLP) 

- 2 0.8 6 

Leaf duration (LeafDur) °C-d 700 80 1 
Extinction coefficient for solar 
radiation (k) 

- 0.5 0.04 2 

Base temperature (Tbase) °C 12 0.6 1 
Optimum temperature (Topt) °C 28 2 1 
Initial leaf area index (LAIini) m2 m-2 0.01 0.005 4, 5 
Full canopy coefficient (Kc) - 1.05 0.15 7 
Maximum leaf area index 
(LAImax) 

m2 m-2 7 0.5 4,5 

Actual to potential transpiration 
ratio to limit leaf growth 
(ActPotTrLeaf) 

- 0.8 0.1 3 

Actual to potential transpiration 
ratio to limit root growth 
(ActPotTrRoot) 

- 0.5 0.1 3 

Maximum water uptake 
(MaxWupt) 

mm d-1 10 1 1 

1: Confalonieri and Bocchi (2005); 2: Boschetti et al. (2006); 3: Confalonieri (unpublished 
data); 4: Boschetti (unpublished data); 5: Stroppiana et al. (2006); 6: Confalonieri et al. 
(2009c); 7: Allen et al. (1998). 
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3. Results and Discussion 

3.1. Sensitivity analysis of the models WARM, WOFOST 
and CropSyst for rice simulation in Jiangsu 

3.1.1. Results obtained with the Morris method 
Results of the SAs carried out on the WARM model using the Morris method are shown 
from Figure 1 to Figure 6. 
The first three maps – describing the spatial distribution of Morris μ* for the most relevant 
parameters – do not show any pattern (i.e., a single parameter is present for each rank 
position). The parameter ranked first was maximum radiation use efficiency (RUE; Figure 
1), followed by optimum temperature for growth (Topt; Figure 2), and partitioning to 
leaves at emergence (RipL0; Figure 3). The importance ot these three parameters was 
already observed in a previous study in Europe (Confalonieri et al., 2010a), although the 
ranking of the remaining factors was different, reflecting the peculiarities of the explored 
conditions. 

 

 

Figure 1: WARM parameters ranked first according to the values achieved for Morris μ* 
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Figure 2: WARM parameters ranked second according to the values achieved for Morris μ* 

 

Figure 3: WARM parameters ranked third according to the values achieved for Morris μ* 
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RUE and extinction coefficient for solar radiation (k) achieved the highest values for Morris 
σ (Figure 4). High values for this index are explained by a high degree of non-linearity of 
the processes involving the parameters, and/or by interactions with other factors. 
Although k was not ranked among the three most relevant parameters according to μ*, it 
is one of the main factors involved with light interception. 
 

 

Figure 4: WARM parameters ranked first according to the values achieved for Morris σ 

 
Figure 5 5 and Figure 66 show the mean values of μ* and σ, achieved by averaging the 
values estimated for all cells of the Jiangsu region. The histograms show that the remaing 
relevant WARM parameters under the conditions explored are Specific Leaf Area at 
tillering (SLAtill) and the extinction coefficient for solar radiation (k), confirming the 
importance of parameters related to the structure of the canopy, after RUE and Topt. With 
particular reference to Figure 6, a discontinuity appears after the first five parameters, thus 
determing the selection of them for the second step of the sensitivity analysis (Sobol’ 
method). 
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Figure 5: Mean values of Morris μ* achieved by the WARM parameters in Jiangsu. The first 
five (from RUE to k) were selected for the second step of the analysis (Sobol’ method) 

 
 

 

Figure 6: Mean values of Morris σ achieved by the WARM parameters in Jiangsu 
  



 
 

 

Crop Monitoring as an E-agriculture tool in 
Developing Countries 

E-AGRI GA Nr. 270351 
 

 
 

 

 

E-AGRI_D32.1_Sensitivity analysis report _1.0, E-
AGRI_D34.1 

 Page 25 of 50 

 

Results of the SAs carried out on the WOFOST model using the Morris method are 
presented from Figure 7: WOFOST parameters ranked first according to the values 
achieved for Morris μ*Figure 7 to Figure 12. 
Efficiency of conversion into storage organs (CVO) was the most relevant parameter in the 
study region (Figure 7). The parameters ranked second and third are maximum CO2 
assimilation rate at emergence (AMAXTB000) and at maturity (AMAXTB200). The spatial 
pattern of the second ranked factors (Figure 8) is exactly specular to the third ranked ones 
(Figure 9). The same parameters were found to be high-ranked in previous SA study carried 
out using the same model in Northern Italy conditions (Confalonieri, 2010). 
 

 

Figure 7: WOFOST parameters ranked first according to the values achieved for Morris μ* 
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Figure 8: WOFOST parameters ranked second according to the values achieved for Morris 
μ* 

 

Figure 9: WOFOST parameters ranked third according to the values achieved for Morris μ* 
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A spatially uniform result was found for the first ranked parameter according to the σ 
index, i.e., the efficiency of conversion to roots (CVR), thus identified as the factor most 
involved in non-linearities and/or interactions with other parameters. 
Figure 11 and Figure 12 show the mean values of μ* and σ, obtained by averaging the 
values estimated for all the 25 x 25 km cells. It is possible to clearly identify the parameters 
to be used for the second step of the analysis (Sobol’ method), i.e., CVO, AMAXTB200, 
AMAXTB000, CVL (efficiency of conversion into leaves) and CVS (efficiency of conversion 
into stems). In particular, Figure 12 reveals that the difference among the two maximum 
CO2 assimilation rates is negligible, since their μ* values are only slightly different. 
An interesting comparison with SA results for wheat in Morocco (sited at the same 
latitudes of Jiangsu region) allow to appreciate the plasticity (i.e., the tendency of a model 
to change its behaviour when applied to different conditions) characterizing WOFOST. For 
Morocco (refer to E-AGRI D34.1), we found that the parameters directly involved with 
temperature (i.e., TMPFTB14 and TMPFTB23) were high ranked according to their 
relevance, whereas their impact for rice simulation was negligible (Figure 11 and Figure 
12). These results reflect the different thermal requirements of the two crops, with rice in 
Jiangsu experiencing conditions it is particularly adapted to, whereas wheat in Morocco 
often suffering for high temperatures. This explains the highest sensitivity of the model to 
temperature-related parameters Morocco. 
 

 

Figure 10: WOFOST parameters ranked first according to the values achieved for Morris σ 
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Figure 11: Mean values of Morris μ* achieved by the WOFOST parameters in Jiangsu. The 
first five (from CVO to CVR) were selected for the second step of the analysis (Sobol’ 

method) 

 
 

 

Figure 12: Mean values of Morris σ achieved by the WOFOST parameters in Jiangsu 
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SA results for the CropSyst parameters in Jiangsu using the Morris method are shown from 
Figure 13 to 18. 
Maximum radiation use effficency (RUE) was the parameter with the highest influence on 
AGB in all study area (Figure 13), followed by optimum temperature for growth (Topt) and 
biomass-transpiration coefficient (BTR), ranked second (Figure 14). By combining the two 
maps, the RUE approach (based on RUE and Topt parameters) appears to be the most 
important compared to the TUEVPD one (based on transpiration; Tanner and Sinclair, 1983). 
This behaviour is probably related to low values of VPD (at the denominator in the TUEVPD 
equation). 
Third ranked parameters map (Figure 15) confirms what discussed above, with BTR often 
ranked third. This rank is assumed more rarely by initial Leaf Area Index, and Topt. 
 

 

Figure 13: CropSyst parameters ranked first according to the values achieved for Morris μ* 
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Figure 14: CropSyst parameters ranked second according to the values achieved for Morris 
μ* 

 

Figure 15: CropSyst parameters ranked third according to the values achieved for Morris μ* 
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Figure 16: CropSyst parameters ranked first according to the values achieved for Morris σ 
 

Figure 16 shows, for each 25 x 25 km cell, the parameters achieving the highest values for 
Morris σ. The spatial pattern underlines that BTR achieved the highest σ values in the 
northern part and RUE in the southern. The importance of the same factors was already 
discussed for the Morris μ*, thus confirming the high degree of non-linearity and/or level 
of interaction with other parameters, as inferred from σ values. 
Figures 17 and 18 present the values of μ* and σ obtained by averaging the values 
estimated for all the cells in the study region. It is possible to notice that μ* values of RUE, 
Topt, BTR, LAIini, and extinction coefficient for solar radiation (k) are separated by the 
others by a kind of discontinuity. The same parameters are at the first five positions of σ 
index histogram (Figure 18). This allows selecting these parameters for the second step of 
the analysis, to be performed using the Sobol’ method. 
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Figure 17: Mean values of Morris μ* achieved by the CropSyst parameters in Jiangsu. The 
first five (from RUE to k) were selected for the second step of the analysis (Sobol’ method) 

 
 

 

Figure 18: Mean values of Morris σ achieved by the CropSyst parameters in Jiangsu 
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3.1.2. Results obtained with the Sobol’ method 
Results of the SAs carried out on the WARM model using the Sobol’ method are presented 
from Figure 19 to Figure 23, where the values of the index St (total order effect) for the 
five top-ranked parameters are shown. 
On average, the parameter ranking reflects that obtained using the Morris method (σ, 
Figure 6), thus confirming the ability of Morris in ranking the parameters involved in 
interactions with others and/or in non-linear processes. 
Maximum radiation use efficiency (RUE) resulted the parameter explaining the largest 
percentage of the total output variance (i.e., 53% by averaging the values estimated for all 
the grid cells). The relevance of the parameter depicted a clear spatial pattern, with 
highest values achieved in the North-Western part and a Soth-Easterly decreasing gradient. 
Apart from this gradient, the parameter resulted less influencing along the coast, where 
rice is actively grown in the central belt. 
 

 

Figure 19: Sobol’ total order effect for the WARM parameter maximum radiation use 
efficiency (RUE) 
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Figure 20: Sobol’ total order effect for the WARM parameter optimum temperature for 
growth (Topt) 

 
St values achieved by optimum temperature for growth (Topt) allow considering this 
parameter as the second most relevant, explaing the 27% of the of AGB variance in the 
Jiangu region (Figure 20). Unlike the RUE spatial gradient (Figure 19), the highest St values 
for Topt were obtained along the coast and are decreasing towards the Western boundary 
of the study area. 
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Figure 21: Sobol’ total order effect for the WARM parameter partitioning to leaves at 
emergence (RipL0) 

 
The third parameter in order of relevance – explaing on average the 11% of the output 
variance – was the Partitioning to leaves at emergence (RipL0; Figure 21). Its highest 
relevance was distributed mainly in the Northern and Southern inland, where the climatic 
conditions resulted less mitigated by the effect of the Yellow Sea. However, spatial 
patterns in the variability of St values for this parameter were less clear with respect to 
what observed for RUE and Topt. 
Extinction coefficient for solar radiation (Figure 22) and Specific Leaf Area at tillering 
(Figure 23) resulted ranked forth and fifth, respectively. They explain together the 11% of 
the total output variance, still with almost uniform spatial distribution (i.e., cells values 
variability resulted less than 2.5%). 
Previous SAs carried out with the same technique, but applied in Europen conditions, 
ranked the model parameters similarly (Confalonieri et al., 2010a). 
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Figure 22: Sobol’ total order effect for the WARM parameter extinction coefficient for solar 
radiation (k) 

 

Figure 23: Sobol’ total order effect for the WARM parameter Specific Leaf Area at tillering 
(SLAtill)  
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Results of the SAs performed on the WOFOST model using Sobol’ method are shown from 
Figure 24 to 28. 
On average, the ranking of parameters resulted very similar to that achieved by Morris μ*, 
with the last two parameter relevance (CVL and CVR) nearly equal. 
The efficiency of conversion to storage organs (CVO) was the parameter explaining alone, 
on average, the 35% of the output variance. Its St spatial distribution (Figure 24) show a 
decreasing gradient from the coast belt to the inland with minimum values in the North-
Western regions of Jiangsu. 
 

 

Figure 24: Sobol’ total order effect for the WOFOST parameter efficiency of conversion into 
storage organs (CVO) 
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Figure 25: Sobol’ total order effect for the WOFOST parameter maximum CO2 assimilation 
rate at maturity (AMAXTB200) 

Results achieved by the parameter ranked second (AMAXTB200) show a similar spatial 
distribution (Figure 25), except for the central area, where the parameter relevance on 
AGB variance was explained with St values often overcoming 30%. 
The spatial patterns in the St values for CVO and AMAXTB200 are probably related to the 
influence of more temperate thermal conditions (due to the Yellow Sea influence) during 
the maturity phase. 
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Figure 26: Sobol’ total order effect for the WOFOST parameter maximum CO2 assimilation 
rate at emergence (AMAXTB000) 

 
On the contrary, the remaing parameters showed a spatial pattern characterized by higher 
parameter relevance in the North-Eastern regions of Jiangsu. 
In particular, the third-ranked parameter was maximum CO2 assimilation rate at 
emergence (AMAXTB000), accounting – by averaging on all cells – for 17% of the output 
variance (Figure 26). 
The forth parameter in order of relevance (i.e., efficiency of conversion into roots, CVR) is 
also related to ABG accumulation at early stage, explaing alone the 14% of total output 
variance (Figure 27). 
Efficiency of conversion into leaves (CVL) was ranked last among those analyzed with the 
Sobol’ method. Its spatial pattern (Figure 28) is particularly similar to CVR one, highlighting 
the importance of the two parameters also in the warmer South-Eastern area. 
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Figure 27: Sobol’ total order effect for the WOFOST parameter efficiency of conversion into 
roots (CVR) 

 

Figure 28: Sobol’ total order effect for the WOFOST parameter efficiency of conversion into 
leaves (CVL) 
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Results of the SAs carried out on the CropSyst model using the Sobol’ method are shown in 
Figures from 29 to 33. The ranking of parameters is similar to that achieved according to 
Morris μ*, except for Leaf Area Index at the emergence, that resulted more relevant with 
respect to the biomass-transpiration coefficient. 
Figure 29 shows the St values for the first ranked parameter, that explains alone about the 
50% of the total AGB variance. The spatial pattern highlights RUE relevance in the North-
West side of the region, along the Yellow Sea coast. 
 

 

Figure 29: Sobol’ total order effect for the CropSyst parameter maximum radiation use 
efficiency (RUE) 

 
The parameter ranked second was Topt (Figure 30). As already discussed for the Morris 
analysis, Sobol’ St values related to RUE and Topt highlighted the explicit presence of 
thermal limitation due to the RUE-based biomass accumulation. Moreover, the spatial 
pattern of the relevance of this two parameters is very similar, meaning that they are 
strictly involved in the same process. 
A completely different ranking was achieved using the same model for rice simulations in 
Northern Italy (Confalonieri, 2010), where the conditions of applications favoured the 
prevalence of the TUEVPD approach (Tanner and Sinclair, 1983). 
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Figure 30: Sobol’ total order effect for the CropSyst parameter optimum temperature dor 
growth (Topt) 

 

Figure 31: Sobol’ total order effect for the CropSyst parameter initial Leaf Area Index 
(LAIini) 
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Figure 31 shows Sobol’ total order results for initial LAI, that explained the 13% of the total 
output variance. The spatial pattern seems to suggest the highest relevance of the 
parameteres in the inland, in particular in the warmer South area. 
The spatial distribution of the St values for BTR was complementary to the Topt one 
(Figure 32). This behaviour was expected, since it confirms the importance of the TUEVPD 
approach for the calculation of AGB in cells where RUE and Tmax were less important (i.e., 
in the North – Western area, Figures 29 and 30). In the specific condition explored by rice 
in Jiangsu, this result underline the warmer thermal condition occurring in that part of the 
area, where higher VPD values were simulated. 
The extinction coefficient for solar radiation was ranked fifth (Figure 33). It shows a spatial 
pattern particularly similar to the LAIini one (Figure 31), although the range of variability of 
its St value is very small (i.e., 2.5 persentage points). 
 
 

 
 

Figure 32: Sobol’ total order effect for the CropSyst parameter biomass-transpiration 
coefficient (BTR) 
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Figure 33: Sobol’ total order effect for the CropSyst parameter extinction coefficient for 
solar radiation (k) 
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4. Conclusions 
The spatially distributed sensitivity analysis experiments carried out in this study allowed 
to get an in-depth knowledge of the behaviour of the WARM, WOFOST and CropSyst 
models while simulating rice in Jiangsu. 
For the WARM model, the variability of rice aboveground biomass accumulation is mainly 
explained by: 

(i) maximum radiation use efficiency (RUE), 
(ii) optimum temperature for growth (Topt), 
(iii) partitioning to laves at emergence (RipL0), 
(iv) extinction coefficient for solar radiation (k), and 
(v) Specific Leaf Area at tillering (SLAtill). 

For the WOFOST model, the five most important parameters resuted: 
(i) efficiency of photosynthates conversion into storage organs (CVO), 
(ii)  fraction of total biomass partitioned to roots at maturity (FRTB200), 
(iii) fraction of total biomass partitioned to roots at emergence (FRTB000), 
(iv) efficiency of photosynthates conversion into leaves (CVL), and 
(v) efficiency of photosynthates conversion into root (CVR). 

The same analysis carried out on the CropSyst model ranks parameters as follows: 
(i) maximum radiation use efficiency (RUE), 
(ii) optimum mean daily temperature for growth (Topt), 
(iii) initial Leaf Area Index (LAIini), 
(iv)  biomass-transpiration coefficient (BTR), and 
(v) extinction coefficient for solar radiation (k). 

In addition, qualitative hints on model plasticity property (i.e., the aptitude of the model to 
change the sensitivity to its parameters under different conditions of applications) can be 
also retrieved from this analysis. As already quantitatively observed for rice in Europe 
(Confalonieri et al., 2012), WOFOST resulted the model showing the highest plasticity for 
rice in Jiangsu, followed by CropSyst and by WARM, with the latter achieving the best value 
for the robustness metric. The lowest plasticity of WARM underlined in that study can also 
be assumed in Jiangsu, since the St spatial pattern shown was the most uniform. 
Consequently, the next step will be the calibration of these parameters against measured 
data, in order to define the parameter sets characterizing the varieties (high- and low-
yielding) for both the crop growth models. 
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